درک زندگی با زیستشناسی کوانتومی
کوانتوم با ارائه یک روش جدید برای مطالعه زیستشناسی میتواند تحولی را در نحوه درک زندگی ایجاد کند. تصور کنید از تلفن همراه خود برای کنترل فعالیت سلولهای بدن به منظور درمان آسیبها و بیماریها استفاده میکنید. به نظر میرسد که این ایده از تخیل یک نویسنده بیش از اندازه خوشبین داستانهای علمی-تخیلی آمده باشد اما چنین کاری ممکن است روزی از طریق حوزه نوظهور زیستشناسی کوانتومی امکانپذیر شود. دانشمندان در طول چند دهه گذشته، پیشرفتهای باورنکردنی در درک و دستکاری سیستمهای بیولوژیکی در مقیاسهای کوچکتر، از تا کردن پروتئین گرفته تا مهندسی ژنتیک داشتهاند اما با وجود این پیشرفتها، میزان تأثیر اثرات کوانتومی بر سیستمهای زنده به سختی قابل درک است. به گزارش ایسنا از فست کمپانی، اثرات کوانتومی، پدیدههایی هستند که بین اتمها و مولکولها رخ میدهند و با فیزیک کلاسیک قابل توضیح دادن نیستند. بیش از یک قرن است که مشخص شده قوانین مکانیک کلاسیک مانند قوانین حرکت نیوتن، در مقیاس اتمی شکسته میشوند. در عوض، اجسام ریز براساس مجموعه قوانین متفاوتی که مکانیک کوانتومی نامیده میشود، رفتار میکنند. برای انسانهایی که فقط میتوانند دنیای ماکروسکوپی قابل مشاهده با چشم غیرمسلح را درک کنند، مکانیک کوانتومی میتواند خلاف واقع و تا حدودی جادویی به نظر برسد. چیزهایی که شاید انتظار وقوع آنها را نداشته باشید، ممکن است در دنیای کوانتومی اتفاق بیفتند؛ مانند الکترونهایی که در موانع کوچک انرژی تونل میزنند و بدون آسیب دیدن در طرف دیگر موانع ظاهر میشوند یا قرار گرفتن همزمان در دو مکان متفاوت که طی پدیدهای به نام برهمنهی کوانتومی رخ میدهد. پژوهشهای حوزه مکانیک کوانتومی معمولا به سوی فناوری جهت میگیرند. با وجود این، شواهد فزایندهای وجود دارند که نشان میدهند طبیعت آموخته است چگونه از مکانیک کوانتومی برای عملکرد بهینه استفاده کند. اگر این واقعا درست باشد، بدین معناست که درک ما در مورد زیستشناسی کاملا ناقص است. همچنین، این موضوع بدین معناست که ما احتمالا میتوانیم فرآیندهای فیزیولوژیکی را با استفاده از خواص کوانتومی ماده بیولوژیکی کنترل کنیم.
کوانتومی بودن در زیستشناسی
احتمالا واقعی است
پژوهشگران میتوانند برای ساخت فناوری بهتر، در پدیدههای کوانتومی دست ببرند. در واقع، شما در حال حاضر در دنیایی با انرژی کوانتومی زندگی میکنید. همه فناوریهای کنونی از نشانگرهای لیزری گرفته تا GPS، امآرآی و ترانزیستورهای موجود در رایانه شما، به اثرات کوانتومی متکی هستند. به طور کلی، اثرات کوانتومی فقط در مقیاسهای طولی و جرمی بسیار کوچک یا زمانی که دما به صفر مطلق نزدیک میشود، خود را نشان میدهند. دلیل این است که مولفههای کوانتومی مانند اتمها و مولکولها زمانی که به طور غیر قابل کنترل در تعامل با یکدیگر و محیط خود قرار میگیرند، قابلیت کوانتومی بودن خود را از دست میدهند. به عبارت دیگر، یک مجموعه ماکروسکوپی از اجسام کوانتومی، با قوانین مکانیک کلاسیک بهتر توصیف میشود. هر چیزی که کوانتومی بودن را آغاز میکند، از نظر کلاسیک میمیرد. برای مثال، میتوان یک الکترون را طوری دستکاری کرد که همزمان در دو مکان باشد اما پس از مدت کوتاهی تنها در یک مکان قرار میگیرد و این دقیقا همان چیزی است که در قوانین کلاسیک انتظار میرود. بنابراین، در یک سیستم بیولوژیکی پیچیده و پر سر و صدا انتظار میرود که بیشتر اثرات کوانتومی در محیطی که «اروین شرودینگر»(Erwin Schrödinger) فیزیکدان اتریشی، آن را «محیط گرم و مرطوب سلول» مینامد، به سرعت ناپدید شوند. این واقعیت که جهان زنده در دماهای بالا و در محیطهای پیچیده عمل میکند، برای بیشتر فیزیکدانان به این معناست که زیستشناسی را میتوان به اندازه کافی و به طور کامل با فیزیک کلاسیک توصیف کرد.
چگونه زیستشناسی کوانتومی را مطالعه کنیم؟
این احتمال وسوسهانگیز که اثرات کوانتومی ظریف میتوانند فرآیندهای بیولوژیکی را تغییر دهند، هم یک مرز هیجانانگیز و هم یک چالش را برای دانشمندان ایجاد میکند. مطالعه اثرات مکانیک کوانتومی در زیستشناسی، به روشهایی نیاز دارد که بتوانند مقیاسهای زمانی کوتاه، مقیاسهای طولی کوچک و تفاوتهای ظریف در حالتهای کوانتومی را که به تغییرات فیزیولوژیکی منجر میشوند، اندازهگیری کنند و همه در یک محیط آزمایشگاهی مرطوب سنتی یکپارچهسازی شوند.
همانطور که الکترونها جرم و بار دارند، دارای خاصیت کوانتومی به نام «اسپین»(Spin) نیز هستند. اسپین، نحوه تعامل الکترونها با میدان مغناطیسی را به همان ترتیبی مشخص میکند که بار الکتریکی، نحوه تعامل الکترونها با یک میدان الکتریکی را نشان میدهد. آزمایشهای کوانتومی، با هدف اعمال میدانهای مغناطیسی مناسب برای تغییر دادن اسپین الکترونهای ویژه صورت میگیرند.
پژوهشها نشان دادهاند که بسیاری از فرآیندهای فیزیولوژیکی، تحت تأثیر میدانهای مغناطیسی ضعیف هستند. این فرآیندها، رشد و بلوغ سلولهای بنیادی، میزان تکثیر سلولی، ترمیم مواد ژنتیکی و موارد بیشمار دیگر را شامل میشوند. واکنشهای فیزیولوژیکی به میدانهای مغناطیسی، با واکنشهای شیمیایی سازگار هستند که به اسپین الکترونهای ویژه درون مولکولها بستگی دارند.
لینک کوتاه:
http://www.setaresobh.ir/fa/main/detail/99718/